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Abstract—We propose a novel two-population genetic algo-
rithm (MPGA) to optimize the routing, modulation and spectrum
assignments (RMSA) in optical orthogonal frequency-division
multiplexing (O-OFDM) networks. The proposed MPGA makes
two populations evolve in parallel with different selection and
mutation strategies, and incorporates a migration operation to
exchange individuals between them. Performance evaluations
show that the MPGA outperforms several existing algorithms.

Index Terms—Multi-population genetic algorithm (MPGA),
routing, modulation and spectrum assignment (RMSA), optical
orthogonal frequency-division multiplexing (O-OFDM).

I. INTRODUCTION

NOWADAYS, optical orthogonal frequency-division mul-
tiplexing (O-OFDM) [1] has attracted intensive research

interests due to its elastic nature of bandwidth allocation
(i.e. granularity at a few GHz). As it transmits high-speed
data over a few narrow-band subcarrier frequency slots, this
technology has the flexibility of choosing modulation formats
based on the transmission distance [2]. When planning a
network that employs O-OFDM, operators need to come up
with an efficient routing, modulation and spectrum assignment
(RMSA) scheme that can serve all traffic demands with the
minimum number of subcarrier frequency slots [3]. To solve
this problem, previous works have proposed several integer
linear programming (ILP) models [4], and heuristic algorithms
[3-6]. However, as the complexity of the network planning
scales rapidly with the network size and the volume of
lightpath requests, these algorithms can become less effective.

In this letter, we propose a two-population genetic algorithm
(MPGA) that can solve the RMSA problem for large-scale
networks with high efficiency. The proposed MPGA makes
two populations evolve in parallel, applies different selection
and mutation strategies to them, and incorporates a migration
operation to exchange individuals between them. Simulations
show that the MPGA outperforms several existing algorithms
by providing more efficient network planning results within
reasonable computation time. To further investigate the perfor-
mance of the MPGA, we design a single-population genetic
algorithm (SPGA) as the reference. The comparative study
shows that the MPGA has superior algorithm robustness.

II. MULTI-POPULATION GENETIC ALGORITHM FOR

RMSA
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Fig. 1. Proposed genetic encoding scheme for the RMSA problem.

Genetic algorithm (GA) is a search heuristic that mimics
the process of natural evolution [7]. In GA, each feasible
solution is represented with a group of genes, which is known
as an individual chromosome. A SPGA makes all individuals
evolve together in a common population, while our proposed
MPGA divides the individuals into two populations and makes
them evolve in parallel with different selection and mutation
strategies. By doing so, we try to solve the famous dilemma
of GA: How to make tradeoff between search performance
and algorithm robustness? The MPGA utilizes a Coarse-
Exploring Population (C-POP) to increase genetic diversity,
while the other Fine-Tuning Population (F-POP) is designed
to prevent chromosomal disruption. During parallel evolution,
these two populations can exchange their individuals by using
the migration operation.

We apply this MPGA-based optimization to solve the
planning of large-scale O-OFDM networks, where the traffic
matrix or the lightpath requests are known a prior. The
physical network topology is G(V,E), where V is the node set
and E is the fiber link set. For a lightpath request LRi from
node s to d, s, d ∈ V , we assign Ni contiguous slots with
a modulation of Mi bits per symbol to satisfy the requested
bandwidth. In this work, we assume that Mi can be 1, 2, 3,
4 for BPSK, QPSK, 8 QAM and 16 QAM, respectively, and
the selection of Mi solely relies on the routing path length
of LRi. Algorithm 1 describes the logic flow of our proposed
MPGA for RMSA, where P (j) is the j-th population, P is the
combined population (P = P (1)

⋃
P (2)), PSizej is the size

of the j-th population, RSets,d is the set of feasible routing
paths between s and d, R

(k)
s,d,i (R(k)

s,d,i ∈ RSets,d) is the k-
th individual’s routing path for the i-th lightpath request LRi

that is from s to d.
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Algorithm 1 Two-Population Genetic Algorithm for RMSA
Output: Best RMSA solution Sbest

{Phase I: Construct Initial Populations}
1: for all populations P (j)(j = 1, 2) do
2: while k ≤ PSizej do
3: for all lightpath requests LRi do
4: select R(k)

s,d,i randomly from RSets,d;

5: compute M
(k)
i and N

(k)
i based on R

(k)
s,d,i and LRi;

6: construct Gene
(k)
i = {R(k)

s,d,i,M
(k)
i , N

(k)
i };

7: Individual[k]← Gene
(k)
i ;

8: end for
9: P (j) ← Individual[k];

10: k = k + 1;
11: end while
12: P ← P (j);
13: end for
{Phase II: Multi-Population Evolution}

14: while MPGA has not converged do
15: for all populations P (j)(j = 1, 2) do
16: evaluate individuals in P (j);
17: Sbest ← the fittest one in P (j);
18: evolve P (j) for one generation;
19: end for
20: if migration is necessary then
21: P = P (1)

⋃
P (2);

22: {P, P (1), P (2)} = Migrate(P );
23: end if
24: evaluate the degree of diversity DP for P (1)(F-POP);
25: end while

A. Genetic Encoding

Fig. 1 illustrates the genetic encoding scheme that represents
a feasible RMSA of a lightpath request LRi as a gene,
combines the genes for all lightpath requests as an individual
chromosome (i.e. feasible network planning), and groups
different chromosomes into a population. For each s-d pair
in G(V,E), all feasible routing paths are pre-determined with
a Link-Disjoint Path Search (LDPS) algorithm [8]. Each LRi’s
RMSA starts from randomly selecting a feasible routing path
for its s-d pair, and then determines Mi based on the distance
of the path. We assume that a frequency slot is 12.5 GHz,
and set the transmission reach for BPSK, QPSK, 8 QAM,
and 16 QAM signals in it as 10000 km, 5000 km, 2500
km, and 1250 km, respectively, based on the experimental
results in [2,9]. Then, we use Mi and the request bandwidth
to calculate Ni. After accommodating all L lightpath requests,
we form a chromosome that contains L genes. When we select
different routing paths for some/all of the genes, a different
chromosome can be formed.

B. Spectrum Assignment and Fitness Evaluation

For each individual k, we perform spectrum assignments
in a gene-by-gene way with a descending order based on
|R(k)

s,d,i| firstly and then N
(k)
i . The assignments are done with

the First-Fit scheme under the spectrum continuity and non-
overlapping constraints, and they conclude the RMSA with a

feasible network planning solution. We can then evaluate this
solution (i.e. individual k) with the fitness function as:

Fk = max{f(e)}, ∀e ∈ E (1)

where, f(·) is the function to return the index of the last used
slot on a link e in G(V,E). A smaller fitness Fk reflects a
more efficient RMSA, as we can allocate a smaller number
of frequency slots per fiber link to satisfy the same traffic
demands. Consequently, the fittest individual (i.e. the best
network planning solution) should be the one that has the
smallest fitness in a generation.

C. Genetic Operations

Based on the individuals’ fitness, we select parents out
for crossover. The truncation selection [7] first sorts the
individuals according to their fitness and then selects certain
proportion of the fittest individuals. The tournament selection
[10] involves running several tournaments among a fixed
number of individuals that are randomly chosen from the
population. The winner of each tournament (i.e. the fittest
individual in the group) is selected. As the truncation selection
usually preserves individuals that are already fit better than
tournament selection, we apply truncation and tournament
selections to F-POP and C-POP, respectively.

Then, in both C-POP and F-POP, the selected parents
crossover to produce children using a multi-point operation
on the gene-level [7]. Specifically, the selected parents are
first sorted from the fittest to less fit, and then we take
pairs in a descending order to crossover. In the crossover,
the number of genes that are exchanged between the parents
is fixed according to a preset crossover rate, but the actual
exchange locations in the chromosome are randomly selected.
For each population, we then select certain numbers of fittest
individuals from the chromosome pools made by the parents
and children as the next generation, and keep their population
sizes constant.

The individuals in C-POP and F-POP go through mutation
afterwards. The mutation first makes an individual determine
whether each of its genes needs to be mutated according to
a preset mutation rate. Then, the genes that are selected for
mutation changes its routing path R

(k)
s,d,i randomly, and its

M
(k)
i and N

(k)
i are then recalculated. To facilitate genetic

diversity, the mutation rate of C-POP is higher that that of the
F-POP. To update its fitness, we redo spectrum assignments for
each individual when the crossover and mutation are done. The
migration is performed every a few generations to exchange
certain fittest individuals in the C-POP with the least-fit ones in
the F-POP. To quantify the MPGA’s convergence performance,
we define the degree of diversity of F-POP as:

DP =
2

PSize1(PSize1 − 1)

PSize1−1∑

k1=1

PSize1∑

k2=k1+1

d(k1, k2)

L

(2)
where d(k1, k2) returns the number of different genes between
individuals k1 and k2, and L is the number of genes in an
individual. Since F-POP is used to tune the solutions finely
without chromosomal disruption, it actually provides the final
optimization result for the MPGA. When the DP of F-POP
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Fig. 2. Convergence performance of the MPGA as the degree of
diversity DP vs. the evolution iteration.

Fig. 3. Number of frequency slots per fiber link obtained by different
RMSA algorithms in the NSFNET topology.

has converged, it means that the fitness of the best individual
in both F-POP and C-POP cannot be improved even with the
periodic migration. Therefore, we can claim the MPGA has
converged if DP has been lower than a pre-set threshold for
5 generations or more [7].

For the demonstration of the output stability of the proposed
MPGA, we design a SPGA as the reference algorithm. The
SPGA’s population size is PSize1 + PSize2, and we use
tournament selection for it. The principles of the mutation
and crossover are the same as those in the MPGA, but with
different mutation and crossover rates.

III. SIMULATION RESULTS

We evaluate the proposed MPGA with simulations using
three mesh topologies, 14-node Deutsche Telekom (DT) [11],
14-node NSFNET (NSF) [12], and 28-node US Backbone
(US-B) [13]. The range of lightpath requests’ bandwidth is 10
- 100 Gb/s, and the populations of F-POP and C-POP are both
30. Both the s-d pair and the bandwidth of a lightpath request
are randomly selected, and all requests are served in the
simulations. Fig. 2 shows the results on DP from simulations
using the three topologies and 1000 requests. We run 10
simulations for each topology and plot the fastest and slowest
convergence cases. It can be seen that for all of the three
topologies, the MPGA converges within 145 generations. Note
that DP converges to slightly different values for different
topologies, and that’s why the thresholds are not the same. We
determine the threshold of DP for the topologies by running
the simulations with a large number of generations (e.g. 500),
monitoring the trend of DP and then choosing a reasonable

Fig. 4. Number of frequency slots per fiber link obtained by different
RMSA algorithms in the Deutsche Telekom topology.

Fig. 5. Number of frequency slots per fiber link obtained by different
RMSA algorithms in the US Backbone topology.

value [7]. For the fastest and slowest cases, the MPGA outputs
best fitness as 209 and 207, 117 and 115, and 277 and 270,
for US-B, DT, and NSF topologies, respectively.

Fig. 3-5 show the performance comparisons of the MPGA
to three algorithms, the Shortest Path and First Fit Spectrum
Assignment (SP-FFSA) [3], the Modified K-Shortest Paths
and Balanced Load Spectrum Assignment (M-KSP-BLSA)
[5], and the Modified Adaptive Frequency Assignment and
Collision Avoidance (M-AFA-CA) [6]. Note that both KSP-
BLSA and AFA-CA are for Routing and Spectrum As-
signment (RSA) only, and are not originally designed for
RMSA. As RMSA has to consider adaptive modulation-level
assignment and the number of slots required by a request can
vary for different routing paths [3], it is fundamentally more
complicated than RSA [4]. To conduct fair comparisons, we
modify both KSP-BLSA and AFA-CA and make them suitable
for RMSA. Traffic cases with 50 - 1000 requests are simulated
in the three topologies using these algorithms. It can be seen
that the MPGA always achieves the best RMSA that requires
the smallest number of frequency slots per link to support the
same traffic load. Compared to the SP-FFSA, M-KSP-BLSA,
and M-AFA-CA, the MPGA can reduce the frequency slots
up to 45%, 28% and 16%, respectively. Note that for the US
Backbone topology, when there are 500 and 1000 requests,
the results from the MPGA and M-AFA-CA are comparable.
For the 500- and 1000-request cases, we also generate 8
different request sets and solve them with the MPGA, SP-
FFSA, M-KSP-BLSA and M-AFA-CA in the NSF topology.
Table I shows the simulation results. We also compare the
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TABLE I
NUMBER OF SLOTS PER LINK IN NSFNET FROM DIFFERENT RMSA ALGORITHMS WITH DIFFERENT SETS OF REQUESTS

Set-1 Set-2 Set-3 Set-4 Set-5 Set-6 Set-7 Set-8
500 Requests MPGA 159 153 155 154 167 158 158 164

SP-FFSA 263 283 261 241 276 252 258 270
M-KSP-BLSA 193 202 186 188 180 209 200 221

M-AFA-CA 176 172 189 171 178 175 173 180
1000 Requests MPGA 269 276 287 280 279 284 289 278

SP-FFSA 476 437 477 490 447 459 488 502
M-KSP-BLSA 340 329 383 355 355 380 368 342

M-AFA-CA 298 303 330 311 335 336 336 323

Fig. 6. Evolutions of F-POP and C-POP for 1000 requests in NSF.

TABLE II
NUMBER OF SLOTS PER LINK IN NSFNET FROM DIFFERENT RMSA

ALGORITHMS WITH 400 GB/S - 1 TB/S REQUESTS

# of Requests MPGA SP-FFSA M-KSP-BLSA M-AFA-CA
20 106 190 168 170
40 198 400 248 268
60 207 430 327 295
80 281 532 395 449

performance of the RMSA algorithms when the bandwidth of
the lightpath requests is large (400 Gb/s - 1 Tb/s), and Table
II shows the simulation results.

Fig. 6 shows the evolutions of the F-POP and C-POP for a
1000-request case in the NSF topology. The F-POP evolves in
a more stable way, and the migration expedites the evolution of
the F-POP at generations 17, 31, 63 and etc. The performance
of the proposed MPGA is also compared to a SPGA with 60
individuals. For each scenario, 10 simulations are executed to
serve 1000 requests in the three topologies. Table III shows
the results. The proposed MPGA achieves better performance
on the output stability, or for different runs, the values of the
best fitness from it have smaller variances.

IV. CONCLUSIONS

We proposed a novel MPGA to optimize RMSA in O-
OFDM networks. The propose algorithm outperformed several
existing algorithms by providing more efficient RMSA for
the network planning. Simulations showed that the algorithm
could converge within 145 generations even for complicated
network planning problems that needed to serve 1000 requests
in large-scale mesh topologies. We also verified that the
MPGA has better output stability than a SPGA with the same
population size.

TABLE III
PERFORMANCE COMPARISONS OF SPGA AND MPGA

SPGA MPGA
DT NSF US-B DT NSF US-B

Best Max 128 283 213 115 277 209
Fitness Min 120 264 201 111 265 204

Mean 122.9 274.1 207.2 113.2 271.5 207.2
Var 7.88 50.54 11.73 2.84 15.16 2.18
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