
262 IEEE COMMUNICATIONS LETTERS, VOL. 16, NO. 2, FEBRUARY 2012

Using Genetic Algorithm to Optimize Mixed Placement of 1R/2R/3R
Regenerators in Translucent Lightpaths for Energy-Efficient Design

Zuqing Zhu, Member, IEEE, Chuanqi Wan, and Weida Zhong

Abstract—We propose an evolutionary approach to efficiently
optimize the mixed placements of 1R/2R/3R regenerators in
translucent lightpaths. The genetic algorithm encodes the place-
ments of mixed types of regenerators as genes, and incorpo-
rates adaptive genetic operators for effective search strategy.
We consider both end-to-end signal transmission quality and
regeneration energy cost, and design the fitness function for
multi-objective optimization. The simulation results show that
the proposed approach converges within 50 generations even
when the lightpath under investigation is as long as 31 hops.
To improve the flexibility of network designs, multiple energy-
efficient mixed regenerator placement (MRP) results can be
obtained simultaneously.

Index Terms—Genetic algorithm, mixed regenerator place-
ment, energy-efficient optical networks.

I. INTRODUCTION

WHILE the remarkable growth of Internet bandwidth
demands have spurred intensive research on efficient

optical networking systems, the major technical difficulties are
still the physical layer limitations. In opaque networks, optical-
electronic-optical (O/E/O) 3R (Re-amplification, Re-shaping,
and Re-timing) regenerators suppress signal distortions at
every switching node to increase transmission reach. However,
since these 3R are usually expensive and power-hungry [1],
network operators have to mitigate their network infrastructure
from opaque to translucent, for reducing capital expenditures
(CAPEX) and operational expenditures (OPEX) [2]. Translu-
cent network design aims to minimize the number of 3R,
without compromising transmission performance. Recently,
all-optical 2R (Re-amplification and Re-shaping) regenerators
have been demonstrated for operation speed at 40 Gb/s and
beyond [1], and commercially available devices have been
released [3,4]. Compared to O/E/O 3R, these devices are much
more energy-efficient, and can achieve wavelength conversion
simultaneously with signal regeneration [1,4]. Therefore, they
can partially replace 3R in optical networks, and solve the
signal quality and wavelength contention issues with a more
energy-efficient way. To explore these benefits, we have pro-
posed a translucent lightpath arrangement that involves mixed
placement of optical inline amplifiers (1R), all-optical 2R,
and O/E/O 3R, for energy saving [5]. However, the mixed
regenerator placement (MRP) algorithm in [5] depends on
exhaustive search, which will become impractical when the
lightpath has a large number (≥ 20) of intermediate nodes
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Fig. 1. Genetic encoding of the MRP problem.

for regenerator placements, or there is a need for multiple
placement candidates.

In this letter, we propose to optimize the MRP more
efficiently with a genetic algorithm (GA). The placements of
1R/2R/3R in a lightpath are encoded as genes. We consider
both the end-to-end transmission quality and the regenera-
tion energy cost, and formulate a fitness function for multi-
objective optimization. The size of the population is properly
selected, and the genetic operators (i.e., selection operator,
crossover operator, and mutation operator) are designed as
adaptive for fast convergence speed.

II. GENETIC ALGORITHM FOR LIGHTPATH DESIGN

Genetic algorithm is a search strategy that mimics natural
evolution [6]. With genetic encoding, a possible solution is
represented by a data structure of genes, called individual
chromosome. A set of individuals are randomly generated as
the initial population 𝑃𝑖𝑛𝑖𝑡. Each individual is evaluated with a
fitness function, and selection chooses relatively fit individuals
as parents for crossover. In crossover, a pair of parents
exchange their genes to create offsprings. The individuals may
then mutate their genes to increase population diversity. By
applying these procedures iteratively, the GA modifies the
population consistently, until good solutions have been found.
Algorithm 1 shows the logic flow of our proposed GA.

A. Genetic Encoding and Fitness Function

We consider a hybrid configuration of regeneration site as
illustrated in the inset of Fig. 1. When there is no regenerator
(2R or 3R) between the WDM terminals, the signal is re-
amplified (1R) only with inline fiber amplifiers. We assume
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Algorithm 1 Genetic Algorithm for Optimizing MRP
Input: 𝑁 -hop Lightpath 𝐿𝑠,𝑑, Fitness threshold 𝐹𝑇𝐻 , 𝐵𝐸𝑅𝑡,

Initial population size 𝑀𝑖𝑛𝑖𝑡, Desired solution set size
𝑀𝑠𝑜𝑙, Maximum number of generations 𝐺𝑚𝑎𝑥

Output: Desired MRP solution set 𝑃𝑠𝑜𝑙

1: {Phase I}
2: 𝑃𝑖𝑛𝑖𝑡 ← Ø;
3: 𝑃𝑠𝑜𝑙 ← Ø;
4: while ∣𝑃𝑖𝑛𝑖𝑡∣ < 𝑀𝑖𝑛𝑖𝑡 do
5: generate new individuals with 𝑁 − 1 genes randomly;
6: kill individuals with apparently low fitness;
7: 𝑃𝑖𝑛𝑖𝑡 ← new individuals;
8: end while
9: {Phase II}

10: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1;
11: 𝑃 = 𝑃𝑖𝑛𝑖𝑡;
12: while ∣𝑃𝑠𝑜𝑙∣ < 𝑀𝑠𝑜𝑙 AND 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝐺𝑚𝑎𝑥 do
13: if BER-qualified individuals < 10% then
14: evaluate 𝑃 using the fitness function with 𝛽 = 0;
15: else
16: evaluate 𝑃 using the fitness function with 𝛽 = 1;
17: 𝑃𝑠𝑜𝑙 ← individuals with 𝐹𝑠,𝑑 < 𝐹𝑇𝐻 ;
18: end if
19: 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠 = 𝑆𝑒𝑙𝑒𝑐𝑡(𝑃 );
20: 𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠);
21: 𝑃𝑡𝑒𝑚𝑝 = 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ∪ 𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠;
22: 𝑃 = 𝑆𝑒𝑙𝑒𝑐𝑡(𝑃𝑡𝑒𝑚𝑝);
23: 𝑃 = 𝑀𝑢𝑡𝑎𝑡𝑒(𝑃 );
24: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛+ 1;
25: end while

the optical signal is in an on-off keying (OOK) format, and bit-
error-rate (BER) is the performance indicator. As illustrated in
Fig. 1, for a lightpath {2-3-6-10-9-13}, the signal gets regen-
erated by a 2R and a 3R at nodes 3 and 10, respectively. The
5-hop lightpath has four intermediate nodes for regenerator
placement, and we can encode the MRP of this lightpath as
an individual chromosome [2 1 3 1]. Hence, for an arbitrary
lightpath 𝐿𝑠,𝑑 with 𝑁 hops, the corresponding individuals
have 𝑁−1 genes. Each gene can be 1, 2, or 3, for a placement
of 1R, 2R, or 3R at an intermediate node.

When the MRP of a 𝑁 -hop lightpath 𝐿𝑠,𝑑 is determined,
we can calculate end-to-end 𝐵𝐸𝑅𝑠,𝑑 by estimating the BER
evolution hop-by-hop with the model in [5]. The regeneration
energy cost 𝑃𝑅𝑒𝑔𝑒𝑛 of the lightpath can be calculated by
summarizing the energy cost of all 2R and 3R regenerators
in it. The BER threshold of a lightpath is 𝐵𝐸𝑅𝑡. The fitness
function is designed as:

𝐹𝑠,𝑑 = 𝛼 ⋅ 𝑓(𝐵𝐸𝑅𝑠,𝑑) +
𝛽

𝑁 − 1
𝑃𝑅𝑒𝑔𝑒𝑛 (1)

where 𝛼 and 𝛽 are coefficients for balancing the evolution
direction between signal quality and energy cost. Note that
𝛼 and 𝛽 can change during evolution. 𝑓(𝐵𝐸𝑅𝑠,𝑑) has a
formulation of

𝑓(𝐵𝐸𝑅𝑠,𝑑) = { 𝑙𝑜𝑔10(𝐵𝐸𝑅𝑠,𝑑), 𝐵𝐸𝑅𝑠,𝑑 < 𝐵𝐸𝑅𝑡

𝑀, 𝐵𝐸𝑅𝑠,𝑑 ≥ 𝐵𝐸𝑅𝑡
(2)

TABLE I
SIMULATION PARAMETERS

Output power per wavelength channel 0 𝑑𝐵𝑚
Fiber loss 0.25 𝑑𝐵/𝑘𝑚

PMD parameter 0.1 𝑝𝑠/
√
𝑘𝑚

EDFA noise figure 6 𝑑𝐵
EDFA spacing 75 𝑘𝑚
Link length between two adjacent intermediate nodes 150 - 450 𝑘𝑚
Total number of intermediate nodes 8 - 30
Data rate 40 𝐺𝑏/𝑠
𝐵𝐸𝑅𝑡, End-to-end BER threshold 10−4

Data sequence for BER estimation PRBS 231 − 1
𝑀𝑖𝑛𝑖𝑡 , Initial population 50
Energy cost per 2R 2 units
Energy cost per 3R 25 units

𝑀 is a large positive integer for discouraging the selection of
MRP with 𝐵𝐸𝑅𝑠,𝑑 ≥ 𝐵𝐸𝑅𝑡.

B. Initial Population and Population Size

When the intermediate nodes of a lightpath are determined,
an initial population is randomly generated with different
combinations of MRP along the lightpath. To improve the
convergence performance, we implement a filtering process to
kill individuals with apparently unfavorable fitness. We choose
an appropriate population size (e.g. 50) and keep this size as
constant through the evolution.

C. Selection

The selection operator is used for two operations: 1) to
select parents from the current generation for crossover, and
2) to select individuals from the union of parents and their
offsprings for the next generation. The selection is based on
a modified roulette method [6], with the preference to indi-
viduals with small 𝐹𝑠,𝑑. To make sure the BER requirement
is first satisfied, we set 𝛼 = 2 and 𝛽 = 0 initially. When
the percentage of individuals that satisfy 𝐵𝐸𝑅𝑠,𝑑 < 𝐵𝐸𝑅𝑡 is
larger than 10%, we change 𝛽 to 𝛽 = 1 to direct the evolution
to prefer energy-efficient solutions.

D. Crossover and Mutation

After the parents are selected, they are sorted from fittest
to less fit. We then take pairs in a descending order and make
them crossover to get offsprings. The crossover is a multi-point
operation on the gene level, with randomly selected locations.
To make the crossover adaptive to fitness, the number of
locations is proportional to the average value of parents’
𝐹𝑠,𝑑. When the parents are not yet fit, large portion of genes
are exchanged to increase the searching space. Otherwise,
good combinations of genes are preserved. After crossover,
the mutation possibility of genes is also proportional to an
individual’s 𝐹𝑠,𝑑.

III. PERFORMANCE EVALUATION

Table I shows the simulation parameters for the performance
evaluation. We assume that the FEC functionality only exists
at the end nodes of lightpaths, and set 𝐵𝐸𝑅𝑡 at 10−4. The
energy cost of all-optical 2R and O/E/O 3R are assumed based
on the parameters in [1,7].
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Fig. 2. MRP results for lightpahts with lengths of 9 to 28 hops.

Fig. 3. (a) Link lengths of a 31-hop lightpath, (b) Five optimized
MRP results for the lightpath.

We first assume that the fiber link length is identical
between the intermediate nodes, as 160 km. Fig. 2 shows the
fittest MRP results for lightpaths from 9 to 28 hops. The GA
gets these results within 32 generations. The fiber link lengths
between two adjacent nodes are then randomly chosen in the
range of 150 to 450 km. Fig. 3(a) shows the link lengths of
a 31-hop lightpath, and Fig. 3(b) plots five optimized MRP
results found by the GA within 50 generations. Fig. 4(a) plots
the histograms of the GA’s results for the 31-hop lightpath, and
we can see that the algorithm converges after 50 generations,
where the percentage of individuals with 𝐹𝑠,𝑑 < 0 stabilizes at
∼ 40%. Fig. 4(b) shows 𝐹𝑠,𝑑 of the fittest individual through
evolution, and the curve also shows convergence after 50
generations.

Fig. 4. (a) Histograms of 𝐹𝑠,𝑑 for MRP individuals of the 31-hop
lightpath, (b) Best fitness for generations.

IV. CONCLUSION

We proposed a genetic algorithm to optimize the place-
ments of 1R/2R/3R regenerators in lightpahts for high energy-
efficiency. By considering both the signal quality and regen-
eration energy cost, we achieved multi-objective optimization
with a properly designed fitness function. Simulation results
showed that the proposed algorithm converged within 50
generations, and multiple optimized regenerator placements
could be obtained simultaneously.
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